Alkyne-Protected Ruthenium Nanoparticles†

نویسندگان

  • Wei Chen
  • Nathaniel B. Zuckerman
  • Xiongwu Kang
  • Debraj Ghosh
  • Joseph P. Konopelski
  • Shaowei Chen
چکیده

Stable ruthenium nanoparticles protected by 1-octynyl fragments were synthesized by a wet chemical method. Transmission electron microscopic measurements showed that the resulting particles exhibited an average core diameter of 2.55 ( 0.15 nm with well-defined Ru crystalline lattice fringes. Because of the formation of RusCt bonds, the CtC vibrational stretch was found in FTIR measurements to red-shift to 1936 cm-1 from 2119 cm-1 that was observed for monomeric 1-octyne. Interestingly, the nanoparticles underwent ligand exchange reactions with alkynyl lithium (e.g., 5-phenyl-1-pentynyl lithium) for further surface functionalization, as manifested in FTIR as well as 1H and 13C NMR measurements. Optically, whereas UV-vis absorption measurements exhibited only a featureless profile, the Ru nanoparticles displayed apparent photoluminescence with an emission peak at 428 nm, which was accounted for by intraparticle charge delocalization as a consequence of the strong RusCt bonds and the conducting Ru metal cores such that the particle bound CtC moieties behaved analogously to diacetylene derivatives. The impacts of the interfacial bonding interactions on intraparticle charge delocalization were further illustrated by Ru nanoparticles functionalized with a mixed monolayer of both octyne and ethynylferrocene ligands. At a ferrocene surface coverage of ca. 13%, electrochemical measurements depicted two pairs of voltammetric peaks with a potential spacing of 265 mV. A new NIR absorption band centered around 1687 nm also started to emerge with the addition of nitrosonium tetrafluoroborate (NOBF4) as the oxidizing reagent and the peak intensity exhibited a volcanoshape dependence on the amount of NOBF4 added. These observations strongly suggested that there existed effective intervalence charge transfer between the particle-bound ferrocene groups at mixed valence, analogous to the observation where the ferrocene moieties were bound onto the particle surface by Ruscarbene π bonds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkyne-functionalized ruthenium nanoparticles: ruthenium-vinylidene bonds at the metal-ligand interface.

Stable ruthenium nanoparticles were prepared by the self-assembly of 1-dodecyne onto the "bare" Ru colloid surface. The formation of a Ru-vinylidene (Ru═C═CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives to form a heterocyclic complex at the metal-ligand interface, as manifested in (1)H and (13)C NMR, photoluminescence, and e...

متن کامل

Modular synthesis of alkyne-substituted ruthenium polypyridyl complexes suitable for "click" coupling.

A modular synthetic method has been developed for the preparation of Ru polypyridyl complexes bearing a terminal alkyne. This method proceeds through a readily accessible intermediate with a silyl-protected alkyne and allows access to a variety of five- and six-coordinate Ru complexes. These complexes can be easily attached to azide-functionalized electrode surfaces with only slight perturbatio...

متن کامل

Electronic conductivity of alkyne-capped ruthenium nanoparticles.

Ruthenium nanoparticles (2.12 ± 0.72 nm in diameter) were stabilized by the self-assembly of alkyne molecules (from 1-hexyne to 1-hexadecyne) onto the Ru surface by virtue of the formation of Ru-vinylidene interfacial linkages. Infrared measurements depicted three vibrational bands at 2050 cm(-1), 1980 cm(-1) and 1950 cm(-1), which were ascribed to the vibrational stretches of the terminal trip...

متن کامل

Chemical Reactivity of Naphthalenecarboxylate-Protected Ruthenium Nanoparticles: Intraparticle Charge Delocalization Derived from Interfacial Decarboxylation

Ruthenium nanoparticles were prepared by thermolytic reduction of RuCl3 in 1,2-propanediol containing sodium 2-naphthalenecarboxylate. Transmission electron microscopic measurements showed that the average diameter of the resulting 2naphthalenecarboxylate-protected ruthenium nanoparticles (RuCOONA) was 1.30 ± 0.27 nm. Interestingly, hydrothermal treatment of the nanoparticles at controlled temp...

متن کامل

Alkyne-stabilized ruthenium nanoparticles: manipulation of intraparticle charge delocalization by nanoparticle charge States.

Monolayer-protected transition metal nanoparticles are a unique family of functional nanomaterials in which the properties of the materials can be readily manipulated not only by the chemical nature of the metal cores and the organic protecting ligands, but also the metal–ligand interfacial bonding interactions. The latter is largely motivated by recent progress in nanoparticle passivation by m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010